Small space analogues of Valiant's classes and the limitations of skew formula
نویسندگان
چکیده
In the uniform circuit model of computation, the width of a boolean circuit exactly characterises the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. We introduce the class VL as an algebraic variant of deterministic log-space L. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width. Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs can be expressed as a read-once exponential sum over polynomials in VL, i.e. VBP ∈ ΣR · VL. We also show that ΣR · VBP = VBP, i.e. VBPs are stable under read-once exponential sums. Further, we show that read-once exponential sums over a restricted class of constant-width arithmetic circuits are within VQP, and this is the largest known such subclass of poly-log-width circuits with this property. We also study the power of skew formulas and show that exponential sums of a skew formula cannot represent the determinant polynomial.
منابع مشابه
Small-Space Analogues of Valiant's Classes
In the uniform circuit model of computation, the width of a boolean circuit exactly characterises the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. We introduce the class VL as an algebraic variant of deterministic log-space L. In the uniform s...
متن کاملHook Formulas for Skew Shapes
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...
متن کاملHook formulas for skew shapes I. q-analogues and bijections
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...
متن کاملSkew-slash distribution and its application in topics regression
In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...
متن کاملHook Formulas for Skew Shapes II. Combinatorial Proofs and Enumerative Applications
The Naruse hook-length formula is a recent general formula for the number of standard Young tableaux of skew shapes, given as a positive sum over excited diagrams of products of hook-lengths. In [MPP1] we gave two different q-analogues of Naruse’s formula: for the skew Schur functions, and for counting reverse plane partitions of skew shapes. In this paper we give an elementary proof of Naruse’...
متن کامل